
Package ‘rejustify’
April 1, 2020

Type Package

Title Support for Rejustify API

Version 1.0.2

Author M. Wolski <marcin@rejustify.com>

Maintainer M. Wolski <marcin@rejustify.com>

Description Set of routines to facilitate communication with rejustify API.

License GPL-3

Encoding UTF-8

LazyData true

Imports httr (>= 1.4),
jsonlite (>= 1.6)

RoxygenNote 7.0.2

R topics documented:
adjust . 1
analyze . 3
callCurl . 5
fill . 6
isMissing . 8
register . 8
setCurl . 9

Index 10

adjust changes the elements of basic blocks used by rejustify API

Description

The purpose of the function is to provide a possibly seamless way of adjusting blocks used in
communication with rejustify API, in particular with the fill endpoint. The blocks include: data
structure (structure), default values (default) and matching keys (kets). Items may only be
deleted for specific matching dimensions proposed by keys.

1

2 adjust

Upon changes in structure, the corresponding p_class or p_data will be set to -1. This is the
way to inform API that the original structure has changed and in case the learn option is enabled,
the new values will be used to train the algorithms. If learn is disabled, information will not be
stored by the API but the changes will be recognized in the current API call.

Usage

adjust(block, column = NULL, id = NULL, items = NULL)

Arguments

block A data structure to be changed. Currently supported structures include structure,
default and keys.

column The data column (or raw in case of horizontal datasets) to be adjusted. Vector
values are supported.

id The identifier of the specific element to be changed. Currently it should be only
used in structure with multi-line headers (see analyze for details).

items Specific items to be changed with the values to be assigned. If the values are
set to NA, NULL or "", the specific item will be removed from the block (only for
kets). Items may be multi-valued.

Value

adjusted structure of the df data set

Examples

#API setup
setCurl()

#register token/email
register(token = "YOUR_TOKEN", email = "YOUR_EMAIL")

#sample data set
df <- data.frame(year = c("2009", "2010", "2011"),

country = c("Poland", "Poland", "Poland"),
`gross domestic product` = c(NA, NA, NA),
check.names = FALSE, stringsAsFactors = FALSE)

#endpoint analyze
st <- analyze(df)

#adjust structures
st <- adjust(st, column = 2, items = list('feature' = 'country'))
st <- adjust(st, column = 3, items = list('provider' = 'IMF', 'table' = 'WEO'))

#endpoint fill
df1 <- fill(df, st)

#adjust default values
default <- adjust(df1$default, column = 3, items = list('Time Dimension' = '2013'))

#adjust keys
keys <- adjust(df1$keys, column = 3, items = list('id.x' = c(3,1,2) , 'id.y' = c(1,2,3)))
keys <- adjust(df1$keys, column = 3, items = list('id.x' = 3 , 'id.y' = NA))

analyze 3

analyze communicates with rejustify/analyze API endpoint

Description

The function submits the dataset to the analyze API endpoint and returns the proposed structure of
the data. At the current stage dataset must be rectangular, either vertical or horizontal.

API recognizes the multi-dimension and multi-line headers. The first inits rows/columns are
collapsed using sep character. Make sure that the separator doesn’t appear in the header values. It
is possible to separate dimensions in single-line headers (see examples below).

The classification algorithms are applied to the values in the rows/columns if they are not empty,
and to the headers if columns are empty. For efficiency reasons only a sample of values in each
column is analyzed. To improve the classification accuracy, you can ask the API to draw a larger
sample by fast=FALSE. For empty columns the API returns the proposed resources that appear to
fit well into the empty space given the header information and overall structure of df.

The basic properties are characterized by classes. Currently, the API distinguishes between 6
classes: general, geography, unit, time, sector, number. They describe the basic characteristics
of the values, and are further used to propose the best transformations and matching methods for
data reconciliation. Classes are further supported by features, which determine these characteristics
in greater detail, such as class geography may be further supported by feature country.

Cleaner contains the basic set of transformations applied to each value in a dimension to retrieve
machine-readable representation. For instance, values y1999, y2000, ..., clearly correspond to years,
however, they will be processed much faster if stripped from the initial y character, such as ^y.
Cleaner allows basic regular expressions.

Finally, format corresponds to the format of the values, and it is particularly useful for time-series
operations. Format allows the standard date formats (see ?as.Date).

The classification algorithm can be substantially improved by allowing it to learn from the his-
tory of how it was used in the past and how it performed. Parameter learn controls this feature,
however, by default it is disabled. The information stored by rejustify is tailored to each user in-
dividually and it can substantially increase its usability. For instance, the proposed provider for
empty row/column with header ’gross domestic product’ is IMF. Selecting another provider, for in-
stance AMECO, will teach the algorithm that for this combination of headers and rows/columns AMECO
is the preferred provider, such that the next time API is called there will be higher chance of AMECO
to be picked by default.

If learn=TRUE, the information stored by rejustify include (i) the information changed by the
user with respect to assigned class, feature, cleaner and format, (ii) resources determined
by provider, table and headers of df, (iii) hand-picked matching values for value-selection.
The information will be stored only upon a change of values within groups (i-iii).

Usage

analyze(
df,
shape = "vertical",
inits = 1,
fast = TRUE,
sep = ",",

4 analyze

learn = FALSE,
token = getOption("rejustify.token"),
email = getOption("rejustify.email"),
url = getOption("rejustify.mainUrl")

)

Arguments

df The data set to be analyzed. Must be matrix-convertible. If data frame, the di-
mension names will be taken as the row/column names. If matrix, the row/column
names will be ignored, and the header will be set from matrix values in line with
inits and sep specification.

shape It informs the API whether the data set should be read in by columns (vertical)
or by rows (horizontal). The default is vertical.

inits It informs the API how many initial rows (or columns in horizontal data), corre-
spond to the header description. The default is inits=1.

fast Informs the API on how big a sample of original data should be. The larger the
sample, the more precise but overall slower the algorithm. Under the fast =
TRUE the API samples 15 fast = FALSE option it is 50%. Default is TRUE.

sep The header can also be described by single field values, separated by a given
character separator, for instance ’GDP, Austria, 1999’. The option informs the
API which separator should be used to split the initial header string into corre-
sponding dimensions. The default is ’,’.

learn It is TRUE if the user accepts rejustify to track her/his activity to enhance the
performance of the AI algorithms. The default is FALSE.

token API token. By default read from global variables.

email E-mail address for the account. By default read from global variables.

url API url. By default read from global variables.

Value

structure of the df data set

Examples

#API setup
setCurl()

#register token/email
register(token = "YOUR_TOKEN", email = "YOUR_EMAIL")

#sample data set
df <- data.frame(year = c("2009", "2010", "2011"),

country = c("Poland", "Poland", "Poland"),
`gross domestic product` = c(NA, NA, NA),
check.names = FALSE, stringsAsFactors = FALSE)

analyze(df)

#data set with one-line multi-dimension header (semi-colon separated)
df <- data.frame(country = c("Poland", "Poland", "Poland"),

`gross domestic product;2009` = c(NA, NA, NA),
`gross domestic product;2010` = c(NA, NA, NA),

callCurl 5

check.names = FALSE, stringsAsFactors = FALSE)
analyze(df, sep = ";")

#data set with multi-line header
df <- cbind(c(NA, "country", "Poland", "Poland", "Poland"),

c("gross domestic product", "2009", NA, NA, NA),
c("gross domestic product", "2010", NA, NA, NA))

analyze(df, inits = 2)

callCurl a wrapper of the httr GET/POST functions

Description

The function offers a basic functionality of commands GET/POST from httr package to commu-
nicate with the APIs. If needed, the proxy settings can be given explicitly, or set in global variables
’rejustify.proxyUrl’ and ’rejustify.proxyPort’.

Usage

callCurl(
method = "GET",
url = NULL,
body = NULL,
proxyUrl = getOption("rejustify.proxyUrl"),
proxyPort = getOption("rejustify.proxyPort")

)

Arguments

method Method of the call (GET or POST).

url Address of the API.

body Request body in case of using POST method.

proxyUrl Url address of the proxy server.

proxyPort Communication port of the proxy server.

Value

API response or errors

6 fill

fill communicates with rejustify/fill API endpoint

Description

The function submits the request tp the API fill endpoint to retrieve the desired extra data points.
At the current stage dataset must be rectangular, and structure should be in the shape proposed
analyze function. The minimum required by the endpoint is the data set and the corresponding
structure. For the moment, publically available resources are pulled through DBnomics plaftorm
(see https://db.nomics.world). Other features, including private resources and models, are
taken as agreed with for the account.

The API calls the submitted data set by x and any server-side data set by y. The corresponding
structures are marked with the same principles, as structure.x and structure.y, for instance.
The principle rule of any data manipulation is to never change data x (except for missing values),
but only adjust y.

Usage

fill(
df,
structure,
keys = NULL,
default = NULL,
shape = "vertical",
inits = 1,
sep = ",",
learn = TRUE,
accu = 0.75,
form = "full",
token = getOption("rejustify.token"),
email = getOption("rejustify.email"),
url = getOption("rejustify.mainUrl")

)

Arguments

df The data set to be analyzed. Must be matrix-convertible. If data frame, the di-
mension names will be taken as the row/column names. If matrix, the row/column
names will be ignored, and the header will be set from matrix values in line with
inits and sep specification.

structure Structure of the x data set, characterizing classes, features, cleaners and formats
of the columns/rows, and data provider/tables for empty columns. Perfectly, it
should come from analyze endpoint.

keys The matching keys and matching methods between dimensions in x and y data
sets. The elements in keys are determined based on information provided in
data x and y, for each empty column. The details behind both data structures
can be visualized by structure.x and y.
Matching keys are given consecutively, i.e. the first elements in id.x and name.x
correspond to the first elements in id.y and name.y. Dimension names are given
for the better readability of the results, however, they are not necessary for API

fill 7

recognition. keys return also data classification in element class and the pro-
posed matching method for each part of id.x and id.y.
Currently, API suports 6 matching methods: synonym-proximity-matching,
synonym-matching, proximity-matching, time-matching, exact-matching
and value-selection, which are given in a diminishing order of complexi-
tiy. synonym-proximity-matching uses the proximity between the values in
data x and y to the coresponding values in rejustify dictionary. If the prox-
imity is above threshold accu and there are values in x and y pointing to the
same element in the dictionary, the values will be matched. synonym-matching
and proximity-matching use a similar logic either of the steps described for
synonym-proximity-matching. time-matching aims at standardizing the time
values to the same format before matching. For proper functioning it requires
an accurate characterization of date format in structure.x (structure.y is
already classified by rejustify). exact-matching will match two values only
if they are identical. value-selection is a quasi matching method which
for single-valued dimension x will return single value from y, as suggested by
default specification. It is the most efficient matching type for dimensions
which do not show any variability.

default Default values used to lock dimensions in data y which will be not used for
matching against data x. Each empty column to be filled, characterized by
default$column.id.x, must contain description of the default values. If miss-
ing, the API will propose the default values in line with the history of how it was
used in the past.

shape It informs the API whether the data set should be read in by columns (vertical)
or by rows (horizontal). The default is vertical.

inits It informs the API how many initial rows (or columns in horizontal data), corre-
spond to the header description. The default is inits=1.

sep The header can also be described by single field values, separated by a given
character separator, for instance ’GDP, Austria, 1999’. The option informs the
API which separator should be used to split the initial header string into corre-
sponding dimensions. The default is ’,’.

learn It is TRUE if the user accepts rejustify to track her/his activity to enhance the
performance of the AI algorithms. The default is FALSE.

accu The minimum distance between strings to consider them as similar.

form Requests the data to be returned either in full, or partial shape. The former
returns the full original data with filled empty columns. The latter returns only
the filled columns.

token API token. By default read from global variables.

email E-mail address for the account. By default read from global variables.

url API url. By default read from global variables.

Value

list consisting of 5 elements: data, structure.x, structure.y, keys and default

Examples

#API setup
setCurl()

8 register

#register token/email
register(token = "YOUR_TOKEN", email = "YOUR_EMAIL")

#sample data set
df <- data.frame(year = c("2009", "2010", "2011"),

country = c("Poland", "Poland", "Poland"),
`gross domestic product` = c(NA, NA, NA),
check.names = FALSE, stringsAsFactors = FALSE)

#endpoint analyze
st <- analyze(df)

#endpoint fill
df1 <- fill(df, st)

isMissing checks if a variable has non-missing values

Description

The function checks if a variable is either null, NA, or has an assigned value. In case of vectors, the
condition is set on all values.

Usage

isMissing(x)

Arguments

x Variable to test.

register sets the token and email as global variables

Description

The function stores the account details into memory to be easier accessed by rejustify package.
The email must correspond to the token that was assigned to it. To register an account visit
rejustify.com.

Usage

register(token = NULL, email = NULL)

Arguments

token API token.

email E-mail address for the account.

setCurl 9

Value

errors only

Examples

register(token = "YOUR_TOKEN", email = "YOUR_EMAIL")

setCurl sets the default configuration for curl calls

Description

The command stores the connection details into memory to be easier accessed by rejustify package.

Usage

setCurl(
mainUrl = "http://api.rejustify.com",
proxyUrl = getOption("rejustify.proxyUrl"),
proxyPort = getOption("rejustify.proxyPort")

)

Arguments

mainUrl Main address for rejustify API calls. Default is set to http://api.rejustify.com,
but depending on the customer needs, the address may change.

proxyUrl Address of the proxy server.

proxyPort Port for communication with the proxy server.

Examples

#setting up connection through proxy
rejustify::setCurl(proxyUrl = "PROXY_ADDRESS", proxyPort = 8080)

Index

adjust, 1
analyze, 3

callCurl, 5

fill, 6

isMissing, 8

register, 8

setCurl, 9

10

	adjust
	analyze
	callCurl
	fill
	isMissing
	register
	setCurl
	Index

